Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Bioengineering (Basel) ; 10(4)2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2297703

ABSTRACT

BACKGROUND: Bio-signals are the essential data that smart healthcare systems require for diagnosing and treating common diseases. However, the amount of these signals that need to be processed and analyzed by healthcare systems is huge. Dealing with such a vast amount of data presents difficulties, such as the need for high storage and transmission capabilities. In addition, retaining the most useful clinical information in the input signal is essential while applying compression. METHODS: This paper proposes an algorithm for the efficient compression of bio-signals for IoMT applications. This algorithm extracts the features of the input signal using block-based HWT and then selects the most important features for reconstruction using the novel COVIDOA. RESULTS: We utilized two different public datasets for evaluation: MIT-BIH arrhythmia and EEG Motor Movement/Imagery, for ECG and EEG signals, respectively. The proposed algorithm's average values for CR, PRD, NCC, and QS are 18.06, 0.2470, 0.9467, and 85.366 for ECG signals and 12.6668, 0.4014, 0.9187, and 32.4809 for EEG signals. Further, the proposed algorithm shows its efficiency over other existing techniques regarding processing time. CONCLUSIONS: Experiments show that the proposed method successfully achieved a high CR while maintaining an excellent level of signal reconstruction in addition to its reduced processing time compared with the existing techniques.

2.
Electronics ; 11(13):1975, 2022.
Article in English | MDPI | ID: covidwho-1911254

ABSTRACT

The pandemic coronavirus COVID-19 spread around the world with deaths exceeding that of SARS. COVID-19 is believed to have been transmitted from animals, especially from bats, and the virus is transmitted from person to person over time. This paper will help countries to make decisions that encourage access to corrected values and get some indication as to whether there are other factors that affect the spread of COVID-19, via methods such as by increasing the daily test rate. This paper presents an intelligent model for analyzing data collected from the countries affected by the COVID-19 virus. It considers the total number of tests that each country has undergone, the number of international tourist arrivals in each country, the percentage of employment, the life expectancy at birth, the median age, the population density, the number of people aged 65 years or older in millions, and the sex ratio. The proposed model is based on machine learning approaches using k-Means as a clustering approach, Support Vector Machine (SVM) as a classifier, and wrapper as a feature extraction approach. It consists of three phases of pre-processing the data collected, the discovery of outlier cases, the selection of the most effective features for each of the total infected, deaths, critical and recovery cases, and the construction of prediction models. Experimental results show that the extracted features of the wrapper technique have shown that it is more capable of fitting and predicting data than the Correlation-Based Feature Selection, Correlation Attribute Evaluation, Information Gain, and Relief Attribute Evaluation techniques. The SVM classifier also achieved the highest accuracy compared to other classification algorithms for predicting total infected, fatal, critical, and recovery cases.

SELECTION OF CITATIONS
SEARCH DETAIL